Code No: D1503

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.TECH II - SEMESTER EXAMINATIONS, APRIL/MAY 2012 ADVANCED OPTIMIZATION TECHNIQUES (MACHINE DESIGN)

Time: 3hours

Max. Marks: 60

Answer any five questions All questions carry equal marks

- 1.a) State the arithmetic-geometric inequality theorem and using it derive a dual problem for an unconstrained GP problem.
 - b) Wheat is to be transported by boat across a river in an open rectangular box. The four sides of the box cost Rs.20 per m^2 and bottom costs Rs.80 per m^2 . The transportation cost per trip is Rs.10. Assuming that the box will have no value after use; find by GP the dimensions of the box to minimize the cost of transporting 32 m^3 of wheat.
- 2.a) Define the degree of difficulty for constrained GP problem.
 - b) Solve the following GP problem Minimize Z = 0.188 yd

st $1.75 yh^{-1}d^{-1} \le 1$ $900 y^{-2} + y^{-2}h^2 \le 1$

3. Find the shortest path from A to E in the following network using Dynamic Program.

	B1	B2	B3			C1	C2
А	2	2	2		B1	3	4
	•	•			B2	4	-
					B3	5	2
	D1	D2		_			7
C1	-	2		L		E1	
C2	5	3			D1	3	

4. Using branch and bound method; solve the following integer linear programming problem

D2

4

 $Max Z = 2x_1 + 3x_2 \quad st$ $5x_1 + 7x_2 \le 35, 4x_1 + 9x_2 \le 36$ $x_i \ge 0 \forall i$ and x_1, x_2 are integers 5. Maximize $f = 4x_1+2x_2+3x_3+c_4x_4$ st $x_{1+}x_3+x_4 \le 24$ $3x_1+x_2+2x_3+4x_4 \le 48$ $2x_1+2x_2+3x_3+2x_4 \le 36$; $x_i \ge 0$

Where c_4 is discrete random variable that can take values of 4, 5, 6 or 7 with probabilities of 0.1, 0.2, 0.3 and 0.4 respectively. Using the simplex method, find the solution that maximizes the expected values of f.

- 6.a) Explain the steps involved in simulated annealing algorithm.
- b) Explain the similarities between GA and traditional methods.
- 7. Using Hook-Jeeves method, Min Y=2+ $(x_1^2-x_2)^2+x_2^2$. Take starting point as (-3,-4), $\Delta x_1 = \Delta x_2 = 0.5$. Show calculations for complete two cycles.
- 8. Using the D.F.P method find the minimum of the function Min $f(X) = x_1^2 - x_1 x_2 + 3x_2^2$. Take initial point as [1, 2].
